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In this paper, the effect of a cubic structural restoring force on the flutter characteristics of
a two-dimensional airfoil placed in an incompressible flow is investigated. The aeroelastic
equations of motion are written as a system of eight first-order ordinary differential equations.
Given the initial values of plunge and pitch displacements and their velocities, the system of
equations is integrated numerically using a fourth order Runge-Kutta scheme. Results for soft
and hard springs are presented for a pitch degree-of-freedom nonlinearity. The study shows the
dependence of the divergence flutter boundary on initial conditions for a soft spring. For a hard
spring, the nonlinear flutter boundary is independent of initial conditions for the spring
constants considered. The flutter speed is identical to that for a linear spring. Divergent flutter is
not encountered, but instead limit-cycle oscillation occurs for velocities greater than the flutter
speed. The behaviour of the airfoil is also analysed using analytical techniques developed for
nonlinear dynamical systems. The Hopf bifurcation point is determined analytically and the
amplitude of the limit-cycle oscillation in post-Hopf bifurcation for a hard spring is predicted
using an asymptotic theory. The frequency of the limit-cycle oscillation is estimated from an
approximate method. Comparisons with numerical simulations are carried out and the accu-
racy of the approximate method is discussed. The analysis can readily be extended to study
limit-cycle oscillation of airfoils with nonlinear polynomial spring forces in both plunge and
pitch degrees of freedom. ( 1999 Academic Press
1. INTRODUCTION

CUBIC NONLINEARITIES IN one-degree-of-freedom (DOF) mechanical and electrical systems can
often be represented by a Duffing’s equation that has been the subject of investigation for
many years. The two classical books by Stoker (1950) and Hayashi (1964) give an excellent
account of the behaviour of Duffing’s equation and more recent studies by Ueda (1980),
Thompson & Stewart (1986) and Dowell & Ilgamov (1988) deal with chaotic characteristics
of that well-known equation.

Numerical simulation of Duffing’s equation was carried out by Jones & Lec (1985) and
they demonstrate the sensitivity to initial conditions in the jump phenomenon. The
dynamic response of a coupled 2-DOF system with cubic nonlinearities was investigated
0889—9746/99/010075#27 $30.00 ( 1999 Academic Press
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analytically and numerically by Wong et al. (1995), who showed that the amplitude—
frequency curve has a much more complex structure compared to a 1-DOF system. The
amplitude—frequency relation changes from a cubic equation for a 1-DOF system to a poly-
nomial of degree nine for a 2-DOF system. The coupled Duffing’s equations were further
investigated by Gong et al. (1998), who showed that harmoic, quasi-periodic and chaotic
motions can exist for system parameters that correspond to those commonly used to
analyse aeroelastic behaviour of aircraft structures. In fact, the equations studied by Wong
et al. (1995) and Gong et al. (1998) were derived for an airfoil performing pitch and plunge
motions but with the aerodynamic terms neglected. The intention of those investigations
dealing with purely mechanical systems was to understand the dynamics of coupled
Duffing’s equations before introducing further complexities when aerodynamic forces are
included.

The first attempt to study the effects of a cubic structural nonlinearity in aeroelasticity
was carried out by Woolston et al. (1955, 1957) using an analog computer. They analysed
a 2-DOF system for hard and soft springs in the torsional degree of freedom of a pitch and
plunge system. A hard spring can be used to represent a thin wing or a propeller blade
subjected to increasing amplitudes of torsion, while a soft spring may be associated with
panel buckling. The spring stiffness was represented by the sum of a linear and a cubic term.
Results were given in the form of plots of initial angular displacement versus flutter velocity.
For a hard spring, the flutter boundary is a straight line at the flutter speed of the linear
system. The soft spring has a destabilizing effect, in that flutter could be induced below the
linear flutter speed by making the initial displacement sufficiently large. For both linear and
soft springs, the flutter was divergent at any velocity above the flutter boundary. However,
for a hard spring, the flutter amplitude is self-limited. The limit amplitude is a function of
velocity, and it increases as velocity is increased beyond the flutter boundary.

In other configurations, cases have been found where a hard spring can be destabilizing,
and it appears that effects produced by a cubic spring depend on the stiffness of the linear
term. Generally, flutter speed decreases as the bending—torsion frequency ratio approaches
unity. If a cubic spring, whether soft or hard, tends to make this ratio approach unity, it will
probably have a destabilizing effect. Woolsen et al. (1955, 1957) made these concluding
remarks in their paper without actually showing any results.

Lee & LeBlanc (1986) analysed numerically 2-DOF airfoil motion with a cubic nonlin-
earity in the pitch degree of freedom. They investigated the effects of initial pitch displace-
ment on the flutter boundaries of soft and hard springs, as well as the amplitudes of pitch
and plunge motion of limit-cycle oscillations for various system parameters. Houbolt’s
(1950) implicit finite-difference scheme was employed throughout their study. Using incom-
pressible aerodynamics, the aeroelastic equations for a two-dimensional airfoil performing
plunge and pitch motions were written as a pair of simultaneous finite-difference equations.
Their conclusions agreed with the limited results given by Woolston et al. (1955, 1957) on
the behaviour of the flutter boundaries for soft and hard springs. Lee & LeBlanc (1986) also
investigated the effects of airfoil/air-mass ratio, undamped plunge/pitch natural frequency
ratio, distance between elastic axis and centre of mass of airfoil, and various stiffnesses of the
nonlinear spring on the airfoil response. In their study, the stiffness nonlinearity is repre-
sented by the sum of a linear and a cubic term similar to that given by Woolston et al. (1995,
1957). If we write it as b

1
a#b

3
a3, where b

1
and b

3
are constants and a is the pitch

displacement, the smallest value of b
1
/b

3
considered by Lee & LeBlanc (1986) was 0)3333.

For pitch angles in the range a(15°, where linear aerodynamics can be used, the cubic
stiffness term is small compared with the linear term.

O’Neil et al. (1996) performed experiments on the existence of limit-cycle oscillation
(LCO) of an airfoil with cubic structural nonlinearities and compared their results with



FLUTTER OF AN AIRFOIL 77
numerical simulations such as those given by Lee & LeBlanc (1986). They found that the
stability boundary is sensitive to initial conditions, and the amplitude and frequency of the
airfoil response depend primarily on the freestream velocity.

Price et al. (1995) studied cubic nonlinearity using numerical and describing-function
techniques. The describing-function technique cannot be used to investigate the effects of
initial conditions but gives good predictions of magnitudes of LCO. The airfoil properties
chosen were the same as those used by Lee & Desrochers (1987). Two values of the ratio
b
1
/b

3
"0)0025 and 0)0002 were used. These values indicate that the linear stiffness is small

compared to the nonlinear terms for small or moderate pitch angles. In other words, the
system is not a perturbation from a linear system as in Lee & LeBlanc (1986) studies. As
pointed out by Woolston et al. (1955, 1957), a hard spring can be destabilizing depending on
the stiffness of the linear term. Chaotic motion was observed from bifurcation diagrams and
Poincaré maps. Because of the analytical nature of the cubic nonlinearity, it is possible to
calculate the Lyapunov spectrum directly from the differential equations. A small value of
0)01 was computed for a limited range of velocity using Lee & Desrochers’ (1987) airfoil
parameters and this indicates the system is midly chaotic. The route to chaos is from
frequency doubling with increasing velocity. Price et al. (1995) concluded that a hard spring
gives LCO at velocities well below the divergent flutter boundary. When the LCO is
period-one there is good agreement in the amplitude of airfoil motion derived from
numerical finite-difference and describing-function solutions. However, the describing func-
tion cannot predict higher-order periodic solutions and Johnson’s (1952) method can be
used to compute the second or higher harmonics.

Zhao & Yang (1990) carried out a similar analysis on a two-dimensional airfoil in
incompressible flow with a cubic restoring moment in pitch. They investigated the effect of
elastic axis position on the dynamic response of an airfoil. Both a describing function and
a time-marching method using the Runge—Kutta numerical scheme were employed. Zhao
& Yang (1990) found that chaos would occur for velocities in excess of that required for
static divergence. The aerodynamics used was quasi-static where the lift and pitching
moment depend only on the instantaneous pitch angle. This difference in aerodynamics
from an unsteady analysis using Wagner’s function has been pointed out by Price et al.
(1995) to have a considerable effect on the dynamic response of the airfoil, and more realistic
aerodynamics should be used to give a better prediction of the airfoil behaviour.

Poirion (1993) used a normal mode basis approach to describe the nonlinear vibrations of
an airfoil. Nonlinear structural elements are replaced with equivalent linear ones and the
displacement vector of a point located on the nonlinear structure is represented by the
summation of a finite number of terms involving the product of the generalized coordinates
and the linearized structure mode shapes. The equations of motion are constructed in the
time domain using generalized aerodynamic forces in the form of rational functions of the
Laplace variable. Poirion (1993) considered an example of a cubic nonlinear restoring force,
and the aircraft structure was modelled using three elastic normal modes with nonlinear
restoring force applied to each mode. An implicit scheme was used to solve the equations
numerically. The value of b

1
/b

3
used is 10 for all three modes and this value makes the cubic

term small compared with the linear term. Also, b
1
/b

3
is considerably larger than the values

used by Price et al. (1995) and Zhao & Yang (1990) and chaos is usually not encountered
when the nonlinear stiffness term is small compared with the linear term. At an airspeed of
1)333 times the linear flutter speed, the generalized coordinates trajectories exhibit a LCO.

In this paper, the method developed by Wong et al. (1995) and Gong et al. (1998) for
coupled nonlinear mechanical systems is extended to study the dynamic response of an
airfoil with soft and hard cubic structural nonlinearities. The aeroelastic equations are
formulated as a set of eight first-order ordinary differential equations. This approach allows
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existing methods suitable for the study of ordinary differential equations to be used in the
analysis. Adopting a fourth-order Runge—Kutta integration scheme, the effects of initial
conditions on the flutter boundaries are studies in greater detail than those described in Lee
& LeBlanc’s (1986) report. Investigation of pre- and post-Hopf-bifurcation is carried out
using methods developed for studying stability near equilibrium points of nonlinear
oscillating systems. The amplitudes of pitch and plunge motions of LCO for post-Hopf-
bifurcation are computed for a hard spring and compared with numerical simulations.
Small values of the ratio of cubic to linear structural stiffness are chosen, so that chaos is not
encountered in this study.

The numerical results presented in this paper are for a single nonlinearity in the pitch
degree of freedom. Examples of coupled cubic nonlinearities in the plunge and pitch
motions are not studied since, even in the absence of aerodynamics, the equations of motion
describing the coupled Duffing’s oscillators show an extremely complex jump condition, as
demonstrated by Lee et al. (1997). There are a large number of possibilities, and perhaps
unknown complexities, of airfoil motion that may occur when various parameters of the
nonlinearities are varied. This, together with the fact that a number of variables are needed
to define the airfoil, makes a complete parametric study of the simple two-degree-of-
freedom system practically impossible. In addition, four initial conditions specifying the
plunge and pitch displacements and their time derivatives are required to uniquely define
the problem. A systematic study of initial conditions has not been attempted, and in
determining the flutter boundary, only one pair of initial conditions (pitch displacement and
velocity or plunge displacement and velocity) is varied at a time, while keeping the other
pair equal to zero. The examples given in this paper on cubic structural nonlinearities are
therefore incomplete, but leave opportunities for the interested reader to explore more
complex airfoil motions that can be encountered with various coupled nonlinearities, airfoil
parameters and initial conditions.

2. ANALYSIS

2.1. TWO-DEGREE-OF-FREEDOM AIRFOIL MOTION WITH CUBIC STRUCTURAL NONLINEARITIES

Figure 1 gives the symbols used in the analysis of a two-degree-of-freedom airfoil oscillating
in pitch and plunge. The plunge deflection is denoted by h, positive in the downward
direction, and a is the pitch angle about the elastic axis, positive with nose up. The elastic
axis is located at a distance a

h
b from the mid-chord, while the mass centre is located at

a distance xab from the elastic axis. Both distances are positive when measured towards the
trailing edge of the airfoil. The aeroelastic equations of motion for linear springs have been
derived by Fung (1969). For nonlinear restoring forces such as those for cubic springs in
both pitch and plunge, they are given by Lee et al. (1997) as follows:

mA#xaaA#2fm
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m@#A
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º*B

2
(m#bmm3)"!
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where m"h/b is the nondimensional plunge displacement of the elastic axis, bm , and ba are
the nonlinear spring constants, ra is the radius of gyration about the elastic axis, and fm and
fa are the viscous damping coefficients in plunge and pitch, respectively.



Figure 1. Schematic of a two-degree-of-freedom airfoil motion.
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In equations (1) and (2), º* is defined as

º*"
º

bua
, (3)

and u6 is given by

u6 "um/ua , (4)

where um and ua are the uncoupled plunging and pitching modes natural frequencies, and
the prime denotes the differentiation with respect to the nondimensional time q defined as

q"ºt/b. (5)

C
L
(q) and C

M
(q) in equations (1) and (2) are the lift and pitching moment coefficients,

respectively. For incompressible flow, Fung (1969) gives the following expressions for C
L
(q)

and C
M

(q) :
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where the Wagner function /(q) is given by

/ (q)"1!W
1
e~e1q!W

2
e~e2q, (8)

and the constants W
1
"0)165, W

2
"0)335, e

1
"0)0455 and e

2
"0)3 are obtained from Jones

(1940).
Due to the existence of the integral terms in the integro-differential equations (1) and (2),

it is difficult to study the dynamic behaviour of the system analytically. For example, the
system stability near equilibrium points cannot be analysed readily since most of the
presently available methods for nonlinear systems are developed for ordinary differential
equations. In order to be able to study this system of equations analytically, Lee et al. (1997)
derived a set of ordinary differential equations by introducing four new variables

w
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4
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Equations (1) and (2) can be written as
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where the coefficients in equations (10) and (11) are given in Lee et al. (1997); f (q) and g(q) are
given by
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Equations (10) and (11) can be written as a set of eight first-order ordinary differential
equations,

X@"f(X; º*), (15)

where the nondimensional velocity º* is a parameter. In terms of vector components,
equation (15) can be expressed as
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where
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Since the aeroelastic equations are formulated as a set of first-order ordinary differential
equations, a number of numerical integration methods are available to solve this initial-
value problem. The fourth-order Runge—Kutta method is used in the present studies to
investigate the effects of initial conditions a(0), a@(0), m(0), and m@(0) on the flutter boundaries.

In the numerical time integration, Jones & Lee (1985) analysed mechanical systems and
pointed out that the accuracy in the amplitude and period of oscillation is affected by the
time step Dq. In their study, a value of Dq equal to 1/256 of the shorter period of the two
coupled modes of oscillation was recommended. This value was found to be sufficiently
small to give good accuracy while ensuring that the computation time is not excessive. In
this study, Dq is chosen to be 0)1 since the smallest period is approximately 27 for the airfoil
parameters used.

2.2. SYSTEM STABILITY NEAR EQUILIBRIUM POINTS

In equation (15) the terms f (q) and g (q) can be neglected if a (0);1 and m(0);1, or q<1. In
this paper, the system behaviour when transients are damped out (that is, q<1) is studied
analytically. The equations governing the airfoil motion are then a set of autonomous
differential equations. The equilibrium points of the dynamic system can be obtained by
setting right-hand side of equation (15) to zero, that is

f (X; º* )"0. (18)

In general, equation (18) has nine solutions with cubic nonlinearities in two degrees of
freedom. Only three solutions exist when we consider one cubic nonlinearity in either the
pitch or plunge degree of freedom. Simplifying equation (18), we found that there is only one
physically meaningful solution denoted as X

E
and is given by

X
E
"M0, 0, 0, 0, 0, 0, 0, 0NT. (19)

Introducing a variable vector y"X!X
E
, and expanding equation (15) about X

E
, we

obtain the following equation:

y@"f (X
E
; º* )#

Lf (X ; º*)

LX KX
F

y#O ( Dy D2) . (20)

Equation (20) describes the evolution of the nonlinear system in the vicinity of X
E
. Since the

system stability near equilibrium points is investigated, the magnitudes of pitch and plunge
motion are small and we can neglect higher-order terms. The linearized equation for the
nonlinear system can be written as

y@"JXy, (21)

where JX"(Lf (X ; º*)/LX)DX
E
, is an 8]8 Jacobian matrix evaluated at X

E
whose terms are

written out in full in Lee et al. (1998). The solution of equation (21) with initial value y(0) at
q"0 is given by

y(q)"eJXq y (0). (22)
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The eigenvalues of JX are normally distinct and the complex eigenvalues are of more interest
than the real-valued ones. A linear transformation T can be found (Wiggins 1990) which
transforms equation (22) into the following form:

y(q)"eT"q~1 y (0)"Te"q T~1y (0). (23)

Here T is an 8]8 matrix and its columns are the eigenvectors corresponding to the eight
eivenvalues of the Jacobian matrix Jx; T~1 is the inverse matrix of T, and " is a diagonal
matrix with eigenvalues on the main diagonal. In component form equation (23) can be
expressed as
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where l
i, j

is the jth component of the ith eigenvector corresponding to the ith eigenvalue j
i
,

and the constant vector C is defined as

C"MC
1
, C

2
,2,C

8
NT"(T~1y(0))T . (25)

In equation (24), the eigenvectors are real or complex conjugates depending whether the
eigenvalues are real or complex conjugates. Each real eigenvector is a one-dimensional
subspace and each pair of conjugate eigenvectors constructs a two-dimensional subspace. It
can be proved (Arnold 1980) that for real initial values of y (0), the solutions of equation (21)
are real-valued. Each two-dimensional subspace composed of conjugate eigenvectors can be
transformed into a real two-dimensional subspace if necessary (Wiggins 190).

In a more compact form, equation (24) can be written as

y
i
(q)"

8
+
k/1

C
k
ej

kq l
ki
, i"1,2, 8. (26)

Equation (26) states that the solution of equation (21) consists of linear combinations of
terms invovling components of the exponential operator, the corresponding eigenvectors
(both are defined by the eigenvalues) and the initial value vector y (0). The eigenvalues are
functions of the system parameters k, xa , ra , a

h
, fa , fm , uN , W

1
, W

2
, e

1
, e

2
and velocity º*.

If the eigenvalues are not distinct, i.e., if there are multiple eigenvalues, the Jacobian
matrix Jx should be transformed into a standard Jordan block form. Since no multiple
eigenvalues are found for a cubic nonlinearity, the expression related to multiple eigen-
values are not required.

2.3. DETERMINATION OF HOPF BIFURCATION POINT

Three conditions are required to satisfy the occurrence of Hopf bifurcation (Seydel 1988): (a)
the bifurcation occurs at an equilibrium point, i.e., f (X

E
; º* )"0; (b) only one pair of

conjugate eigenvalues of the Jacobian matrix Jx(XE
; º*) has vanishing real part at this
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point; and (c) the derivative of the real part of this pair of conjugate eigenvalues with respect
to º* is not zero at this point, i.e., the ‘‘transversality condition’’ is satisfied,

d[Re(j)]

dº* K
U

*
E

O0. (27)

where º*
E

is equal to the nondimensional linear flutter speed º*
L
. A Hopf bifurcation point

can be considered as the transition point where a stable equilibrium solution changes to an
oscillatory solution with zero amplitude (Seydel 1988). If we consider only periodic oscilla-
tion, the terms f (q) and g (q) can be neglected in equation (15) and we have a system of
autonomous equations.

An expanded system to determine the Hopf bifurcation point can be derived by adding
a small oscillatory perturbation to an equilibrium point X

E
(Morton & Beran 1996). We

assume

X"X
E
#ePe*uq"ePeiuq , (28)

where e is a vanishingly small parameter and P"P
1
#iP

2
is a complex eigenvector

corresponding to the purely imaginary eigenvalue iu. Equation (28) assumes that the system
evolution from the perturbation is within the subspace formed by the conjugate eigenvec-
tors corresponding to the conjugate eigenvalue $iu. Substituting equation (28) into (15)
and using Taylor’s expansion, we obtain the following equation:
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; º*)"0, neglecting higher-order terms we obtain

iuP!fX (X
E
; º*)P"0, (30)

which can be written as

uP
2
#fX (X

E
; º*)P

1
"0,

!uP
1
#fX (X

E
; º*)P

2
"0. (31)

To uniquely define the eigenvector P, vectors P
1

and P
2

are normalized by the following
constraints:

qTP
1
"0, qTP

2
"1, (32)

where q is a normalization vector. The components of P
1

and P
2

are initialized by assigning
an arbitrary value to them, and following Morton & Beran (1996), q is formed by the
relationship
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which satisfies the second normalization condition in equations (32). Combining equations
(31) and (32) we obtain an expanded system to determine the Hopf bifurcation point given
by the following equations:
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where Y is the variable vector with 18 components; F (Y) represents the function vector of
the 18 functions and the individual terms are given in Lee et al. (1998).

Using Newton’s iteration method the above equation can be written as

FY (Y)DY"!F (Y) , (35)

where FY (Y) is the Jacobian matrix of F (Y), and DY is the increment of Y used in the next
iteration. The Jacobian matrix FY(Y) in block-matrix form is given by

FY (Y)"

fX (X
E
; º*) MfX (X

E
; º*)P

1
N
U

* uI P
2

qT 0 0 0
!uI MfX (X

E
; º*)P

2
N
U

* fX (X
E
; º*) !P

1
0 0 qT 0

, (36)

where I is the identity matrix. The elements of the Jacobian matrix FY(Y) are also given in
Lee et al. (1998). In equation (36), fX(XE

; º*) is an 8]8 Jacobian matrix evaluated at
X"X

E
, and MfX(X

E
; º* )P

i
N
U*

is an eight-component vector of the derivative of the product
of fX(X

E
; º* ) and P

i
(i"1, 2) with respect to º*.

2.4. AMPLITUDES OF PITCH AND PLUNGE MOTION OF LIMIT CYCLE OSCILLATION

An airfoil with a cubic structural nonlinearity is unstable at equilibrium points º*'º*
l
.

For ba'0, a small perturbation will grow initially and reach a limit cycle state after
a transient period. In the analysis given by Lee et al. (1997) for large time q, the transient
terms f (q) and g (q) in equations (10) and (11) damp out and we have a system of autonomous
equations. We assume the plunge and pitch motions to be of the following form:

m (q)"a
1
(q) cos(uq)#b

1
(q) sin(uq),

(37)
a(q)"a

2
(q) cos(uq)#b

2
(q) sin(uq),

and w
i
(i"1, 2, 3, 4) can be written as follows:

w
1
(q)"a

3
(q) cos(uq)#b

3
(q) sin(uq),

w
2
(q)"a

4
(q) cos(uq)#b

4
(q) sin(uq),

(38)

w
3
(q)"a

5
(q) cos(uq)#b

5
(q) sin(uq),

w
4
(q)"a

6
(q) cos(uq)#b

6
(q) sin(uq),

where a
i
and b

i
(i"1,2, 6) are assumed to be slowly varying functions of q, and u is the

angular frequency of the LCO. The second time derivatives are considered to be small thus
neglected. This approach is often used in perturbation analysis (Jordan & Smith 1983).

Note that m3 (q) and a3(q) can be written as

m3 (q)"3
4
r2[a

1
(q) cos(uq)#b

1
(q) sin(uq)]#Mhigher harmonics in 3uqN,

(39)
a3(q)"3

4
R2[a

2
(q) cos(uq)#b

2
(q) sin(uq)]#Mhigher harmonics in 3uqN,

where r2"a2
1
#b2

1
, R2"a2

2
#b2

2
and r and R denote the amplitude of m and a, respectively.

Assuming the higher harmonic terms in equations (39) to be small and substituting
equations (37), (38) and (39) into (9), (10) and (11), we obtain a system of 12 first-order
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nonlinear ordinary differential equations after matching the coefficients of cos(uq) and
sin(uq). The resulting equations in matrix form are

MZ@"Q(Z), (40)

where the matrix M in block form is

M"C
H 0
0 ID , (41)

with

H"

c
2

2uc
0

c
3

2uc
1

!2uc
0

c
2

!2uc
1

c
3

d
5

2ud
0

d
2

2ud
1

!2ud
0

d
5

!2ud
1

d
2

, (42)

and I is an 8]8 identity matrix.
In equation (40), Z is a variable vector given by

Z"Ma
1
, b

1
, a

2
,2, a

6
, b

6
NT, (43)

and Q(Z) is the function vector

Q (Z)"[Q
1
(Z), Q

2
(Z),2, Q

12
(Z)]T, (44)

whose terms are defined in Lee et al. (1998). Since the amplitudes of LCO do not change
with time, we can set a@

i
"0 and b@

i
"0 and obtain a system of 12 algebraic equations. In

deriving the expressions for a
1
, b

1
, a

2
, and b

2
, equation (40) is first solved for a

3
, b

3
,2, a

6
and b

6
which are then substituted into the expressions for a

1
, b

1
, a

2
, and b

2
to give a set of

nonlinear algebraic equations. Following Lee et al. (1997), a quadratic equation for R2 can
be written as follows:

R4#
2s

2
q
2

R2#C"0. (45)

where

C"

1

q2
2

Mn2
2
#s2

2
!(p2

2
#m2

2
)AN, (46)

and

A"

(n2
1
#s2

1
)

[m2
1
#(p

1
#q

1
r2)2]

. (47)

The coefficients m
1
, n

1
,2 are given in Lee et al. (1998). Note that these coefficients are

functions of the systems parameters, velocity, º*, and the angular frequency u of LCO.
The plunge amplitude is given by

r2"AR2. (48)

In this study, we consider only a cubic nonlinearity in the pitch DOF. Setting
bm"c

5
"q

1
"0, equation (47) becomes

A"

(n2
1
#s2

1
)

(m2
1
#p2

1
)
. (49)
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Finally, we can get the following simple expression of the amplitude of pitch motion of
LCO:

R2"
1

q
2

M!s
2
$J(p2

2
#m2

2
)A!n2

2
N, (50)

and the amplitude of plunge motion is given by equation (48).

3. RESULTS AND DISCUSSION

In Lee & LeBlanc’s (1986) studies, only a cubic structural nonlinearity in the pitch degree of
freedom was considered, and bm in equation (1) was set to zero. In this paper, we use
equation (15) to recompute a number of cases from Lee & LeBlanc’s (1986) report and
demonstrate that the two methods give identical results. The elastic axis of the airfoil is
placed at the 1

4
chord point (that is a

h
"!1

2
), fm"fa"0 and ra is kept constant at 0)5.

Other properties of the airfoil, such as k, xa uN and ba are varied.
The deviation from linearity of the restoring moment is shown in Figure 2 where the term

a#baa3 in equation (2) is plotted against a for three values of ba up to $3. At the
maximum value of ba"3, the contribution of the cubic term is about 37% at a"20°,
Figure 2. Effects of ba on nonlinear moment.



Figure 3. Flutter boundary (a (0) versus º*/º*
L
) for soft spring: u6 "0)2, k"100, a

h
"!0.5, xa"0)25, ra"0)5,

fa"fm"0 and ba"!3.
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approximately 20% at a"15°, and can be neglected for a(5°. For values of a where the
aerodynamics given by equations (6) and (7) is applicable (a approximately under 15°), the
nonlinear term can be considered small and the system is dominated by the linear stiffness.

3.1. FLUTTER BOUNDARIES FOR SOFT SPRING

For a soft spring, ba is negative, and we investigate the effects of initial conditions by
a numerical simulation study. The linear flutter velocity º*

L
is used as a reference velocity

and is determined numerically by setting the nonlinear term ba to be zero. By observing the
converging and diverging behaviour of the time series, we can determine the linear flutter
velocity for the selected system parameters.

Figure 3 shows flutter boundaries for !22°(a(0)( to 22° and a@ (0)"0)0, 1)15, 1)72
and 2)29° unit time while kept m (0)"m@(0)"0. The motion is unstable to the right of the
flutter boundary. The airfoil parameters are : k"100, u6 "0)2, ra"0)5, a

h
"!1/2,

xa"0)25 and ba"!3)0. The ranges of a(0) and a@(0) are selected so that the linear
aerodynamics given in equations (6) and (7) can be used, except for a(0) greater than
approximately 15° where the limitations of the aerodynamic terms are probably reached.
The destabilizing effect of a soft spring is illustrated in this figure which shows that flutter
can be induced at a velocity º* below the linear flutter velocity º*

L
. This effect increases

with increasing a@ (0). The flutter boundary curve for a@ (0)"0 is symmetrical about the axis
a(0)"0. For the other three values of a@(0), the flutter boundaries are not symmetrical,
because a positive velocity is given to the airfoil initially.

Figure 4 shows the destabilizing effect of initial a@(0) on the flutter boundaries for
!3(a@(0)(3°/unit time at a(0)"0°, 5°, 10°, 15° for the same values of k, ba , xa , ra and u6 .



Figure 4. Flutter boundary (a@(0) versus º*/º*
L
) for soft spring: u6 "0)2, k"100, a

h
"!0.5, xa"0)25,

ra"0)5, fa"fm"0 and ba"!3.

Figure 5. Flutter boundary (m (0) versus º*/º*
L
) for soft spring: u6 "0)2, k"100, a

h
"!0.5, xa"0)25, ra"0)5,

fa"fm"0 and ba"!3.
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Figure 6. Flutter boundary (m@(0) versus º*/º*
L
) for soft spring: u6 "0)2, k"100, a

h
"!0.5, xa"0)25,

ra"0)5, fa"fm"0 and ba"!3.
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As expected, the curve for a (0)"0° is symmetric about the axis a@(0)"0, while for a(0)'0
the flutter boundaries are displaced downwards and the amount of the shift increases with
a(0).

The flutter boundaries for !0)6(m(0)(0)6 corresponding to m@ (0)"0)0, 0)01, 0)02, 0)03
and 0)04 are shown in Figure 5 for the same values of k, ba , xa , ra and u6 . The criterion for
selecting the ranges of m(0) and m@(0) is similar to that for a(0) and a@(0), that is, the
amplitudes of plunge and pitch motions are sufficiently small for the linear aerodynamics to
be applicable. The flutter boundary for m@(0)"0 is symmetric with respect to the m (0) axis,
while for other values of m@(0) it is highly nonsymmetric. The value of m(0) at the maximum
º*/º*

L
moves downwards in the negative m (0) direction. Each of the curves for which

m@(0)O0 intersects with the flutter boundary for m@(0)"0 in the region of negative m (0).
Figure 6 gives the flutter boundaries for !0)04(m@(0)(0)04 at m (0)"0)0, 0)2, 0)4, 0)6

for the same values of k, ba , xa , ra and u6 . The curves cross each other in the region of
negative m@(0).

The flutter boundary is affected by the system parameters, such as k, ba , u6 and xa. These
effects have been studied by Lee LeBlanc (1986), who showed that increasing k has
a destabilizing effect and the boundary curves are all displaced more towards the left for the
larger values of k. The effect is more pronounced as the value of ba decreases.

Increasing the distance between the centre of mass and the elastic axis has a stabilizing
effect, and results from Lee & LeBlanc (1986) at k"250 show the flutter boundaries to
move closer to the linear flutter speed as xa is increased. In the same report, the effect of
u6 was investigated, and the results show that, as the uncoupled natural frequency for
plunging motion approaches that of the pitching motion, the flutter boundaries move closer



Figure 7. Subcritical Hopf bifurcation for a soft spring with ba"!3.
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to the linear flutter boundary and the destabilizing effect becomes smaller. At u6 "1)2, it was
shown (Lee & LeBlanc 1986) that the flutter boundaries are virtually independent on the
coefficient ba .

The system stability near equilibrium points can be presented in a plot similar to
a bifurcation diagram. For ba(0, a subcritical Hopf bifurcation (Thompson & Stewart
1986) occurs at º*/º*

L
"1. In Figure 7, a (0) is plotted against º*/º*

L
for a (0)@"m(0)"

m@(0)"0 with ba"!3)0, k"100, u6 "0)2, xa"0)25 and ra"0)5. The dotted lines for
º*/º*

L
41)0 is the flutter boundary. For values of a (0) bounded by these two curves, the

motion is stable. The inset of four figures showing the trajectories of the pitch oscillation are
plotted in the phase plane (a@ versus a). They are obtained at º*/º*

L
"0)94, 0)98, 1)02, 1)06

and a (0)"10, 7)5, !0)2 and !0)2°, respectively. The system converges to the equilibrium
points (a@"a"0) for º*/º*

L
(1)0 and diverges away from the unstable equilibrium

points (a@"a"0) for º*/º*
L
'1)0. The Hopf bifurcation point is located at º*/º*

L
"1.

3.2. FLUTTER BOUNDARIES FOR HARD SPRING

For positive values of ba (hard spring), divergent flutter is not encountered. Instead, the
flutter boundaries [e.g. a(0) versus º*/º*

L
] for all ba coalesce into a straight line at the

linear flutter speed. This was shown by Woolston et al. (1955, 1957) and numerically by Lee
& LeBlanc (1986) for a cubic nonlinearity in the pitch degree of freedom and various airfoil
parameters. To the right of this boundary, the oscillations maintain a self-limited amplitude
which is independent of the initial angular displacement a (0).

For a given a(0), the time it takes for the airfoil motion to reach a steady value depends on
the velocity ratio º*/º*

L
. If a solution is required very close to the flutter boundary, a large
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number of cycles of oscillations have to be computed. Using the same airfoil parameters as
those for a soft spring described in the last section, (that is, k"100, u6 "0)2, xa"0)25,
ra"0)5), Lee & LeBlanc (1986) showed that at ba"0)3 it takes approximately 250 cycles
for the solution to decay to practically zero values at º*/º*

L
"0)9992 (0)08% less than

linear flutter speed) with initial amplitude a (0)"10° and a (0)@"m (0)"m@(0)"0. At small-
er values of a (0)"1° and 3°, it requires approximately the same number of cycles for the
oscillation amplitude to reach zero value. In the LCO region where º*/º*

L
'1, the time it

takes to reach steady values depends on initial conditions. At º*/º*
L
"1)0008 (0)08%

greater than linear flutter speed), the solution takes 130 cycles at a(0)"10° to reach
constant amplitude compared to 190 cycles at a(0)"1°. Increasing the value of º*/º*

L
increases the convergence rate. At º*/º*

L
"1)0024, steady pitch amplitudes are reached

after 60 and 100 cycles for a(0)"10° and 1°, respectively. Equation (15) has been used to
repeat Lee & LeBlanc’s (1986) investigation and identical results were obtained. It was
found that when large values of ba were used, the time it takes to decay to a zero value
(º*/º*

L
(1) or reach a constant value (º*/º*

L
'1) is considerably shorter than those at

ba"0)3 shown in Lee & LeBlanc’s (1986) report.
Lee & LeBlanc (1986) concluded from a number of case studies for different airfoil

parameters that there is no noticeable change in the amplitude of the pitch motion when the
airfoil/air-mass ratio is varied, while the plunge amplitude increases with an increase in that
ratio. Increasing the distance between the centre of mass and the elastic axis results in
a larger pitch amplitude while the plunge amplitude gets smaller. As the ratio of the
uncoupled natural frequencies of the plunge to pitch motion approaches and exceeds unity,
there is an increase in the pitch amplitude while a much larger drop in the plunge amplitude
is detected.
Figure 8. Supercritical Hopf bifurcation for a hard spring with ba"3.
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Similarly to Figure 7 the stability behaviour of the airfoil near equilibrium points can be
presented in a bifurcation diagram. For ba"3, k"100, u6 "0)2, a

h
"!1/2 and xa"0)25,

Figure 8 shows a plot of the pitch amplitude a
A

against º*/º*
L
. This figure is obtained by

varying a (0) only, while keeping a@(0)"m (0)"m@(0)"0. For º*/º*
L
(1, the solution is

stable for all initial displacement a (0). The solutions in the phase plane (a@ versus a) at
º*/º*

L
"0)94, a (0)"10° and º*/º*

L
"0)98, a(0)"10° are shown in the inset. The phase

curve spirals into the origin (a@"a"0) for all a(0), showing the solution to be stable for
º*/º*

L
(1. For º*/º*

L
'1, the two insets of the phase diagram at º*/º*

L
"1)02 and 1)04

for a (0)"0)2° show the trajectories to spiral away from the origin and becomes periodic
with constant amplitude. The solid line shows the amplitude of pitch motion a

A
obtained

numerically using equation (15). This value is independent of initial displacement a(0) since
all solutions with different a(0) will eventually reach a limit-cycle state. The transition from
a stable equilibrium solution to limit cycle oscillation is known as a supercritical Hopf
bifurcation (Thompson & Stewart 1986).

3.3. SYSTEM BEHAVIOUR NEAR EQUILIBRIUM POINTS

For various values of º*/º*
L

with k"100, xa"0)25, ra"0)5 and u6 "0)2, the eigenvalues
of the Jacobian matrix at equilibrium points can be calculated using equation (21). The
elements of JX are given in Lee et al. (1998) and ba appears only in the term d

4
[see Lee et al.

(1997)]. Since the eigenvalues are evaluated at the equilibrium points where x
1
"

x
2
"2x

8
"0, the term containing d

4
becomes zero and the eigenvalues are independent

of ba . The solution of the Jacobian matrix for a given value of º*/º*
L

has eight eigenvalues.
There are two pairs of conjugate eigenvalues (denoted by models I and II) and their real and
Figure 9. Variation of j with º*/º*
L

for the pitch motion with u6 "0)2, k"100, a
h
"!0.5, xa"0)25, ra"0)5,

fa"fm"0 and ba"3.



Figure 10. Time series of pitch motion at º*/º*
L
"0)8 with u6 "0)2, k"100, a

h
"!0.5, xa"0)25, ra"0)5,

fa"fm"0 and ba"3.
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imaginary parts are plotted against º*/º*
L

in Figure 9 (denoted by dashed and solid lines
respectively). The other four eigenvalues have zero imaginary parts and they do not
represent oscillatory motion.

On examining a typical time series of a from numerical integration of equation (15)
(Figure 10), we see that the pitch motion can be adequately represented by a single mode.
We can denote the pitch motion by a"a

0
exp[(j

r
#ij

i
)]q, where a

0
is a constant, j

r
and j

i
are the real and imaginary part of the exponential coefficient j. Superimposed in Figure 9
are results obtained from numerical simulation for ba"3. The initial conditions are
a(0)"1° (for º*/º*

L
(1) and a (0)"0)1° (for º*/º*

L
'1) with a@(0)"m (0)"m@(0)"0.

The imaginary part j
i
is calculated by the following equation:

j
i
"

2n (n
2
!n

1
)

q
2
!q

1

, (51)

where times q
2

and q
1

correspond to cycle numbers n
2

and n
1
, respectively. The real part j

r
is determined by

j
r
"

log a
2A

!log a
1A

q
2
!q

1

, (52)

where a
1A

and a
2A

are the amplitudes of pitch angles corresponding to q
2

and q
1
.

The maximum values of a
1A

and a
2A

are kept below 10° in the numerical simulation. The
first 1

2
to 31

2
cycles in the time series are used to calculate j

r
and j

i
.

The analytical and numerical simulation results are in excellent agreement for mode II for
º*/º*

L
'1. However, for º*/º*

L
(1, the results from numerical simulation have some

scatter about the analytical solution in j only.

r



Figure 11. Time series of plunge motion at º*/º*
L
"0.8 with u6 "0)2, k"100, a

h
"!0.5, xa"0)25, ra"0)5,

fa"fm"0 and ba"3.
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Time series of m (Figure 11) show that for º*/º*
L
(1 more than one mode is present. We

can write m as the sum of two modes as follows:

m"
2
+
n/1

m
0n

ejnq . (53)

The two modes can be obtained by decomposing the time series using wavelets. The real
and imaginary parts of j can then be solved using equations (51) and (52) and their values
are plotted in Figure 12 which shows fair agreement with the solution from the Jacobian
matrix. It is difficult to obtain good accuracy of j using equations (51) and (52) when only
a few cycles of the time series are available. This is especially true for mode I which decays to
practically zero values in less than three cycles. The results show the coalescence of the two
modes, and after a short transient period, only mode II is present for º*/º

L
'1. In the

region of 0)974º*/º
L
41, the use of wavelets to separate the two modes becomes

increasingly difficult as the two frequencies approach each other. Experience with wavelets
(Lee & Wong 1998) shows that j

r
is difficult to obtain accurately when frequency separation

between the two modes is not large.
In Figure 13 the eigenvalues of mode II for the pitch motion together with j from

numerical simulations shown in Figure 9 are replotted in the real and imaginary planes for
º*/º*

L
"0)97 to 1)08. The filled circle symbols denote numerical results, while the solid

lines represent solutions from the eigenvalues of the Jacobian matrix. We can see that the
real part of the complex conjugates increases with º*/º*

L
and passes through zero at

º*/º*
L
"1)0 where a Hopf bifurcation occurs. With further increase in º*/º*

L
, the real

part of the conjugates switches sign and becomes positive, changing the stable equilibrium
state to an unstable one.



Figure 12. Variation of j with º*/º*
L

for the plunge motion with u6 "0)2, k"100, a
h
"!0.5, xa"0)25,

ra"0)5, fa"fm"0 and ba"3.
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3.4. FLUTTER VELOCITY AND ANGULAR FREQUENCY AT HOPF BIFURCATION POINT

By solving equation (34), we can determine the Hopf bifurcation point and find the linear
flutter velocity and angular frequency at this point. These two quantities have been
calculated for various parameters and compared with numerical simulation. The results
show that, up to the fourth decimal point, there were no noticeable differences detected.

Figure 14 illustrates the variation of the linear flutter velocity and angular frequency at
the Hopf point as functions of the frequency ratio u6 for k"100, xa"0)25 and ra"0)5. The
flutter velocity decreases with u6 until u6 "0)8 is reached and increases from then on with
increasing u6 . The angular frequency increases rapidly with u6 initially until a maximum is
reached at u6 "1)1 and then decreases gradually. The effect of airfoil/air-mass ratio on
flutter velocity and frequency shows the linear flutter velocity increases almost linearly with
k, while the frequency decreases monotonically. The effect of the distance between the centre
of mass and the elastic axis shows that º*

L
decreases and u increases with increases in xa .

The radius of gyration about the elastic axis has the effect of increasing the flutter velocity,
while at the same time causes a decrease in frequency for increasing ra .

3.5. AMPLITUDE AND FREQUENCY OF LIMIT-CYCLE OSCILLATIONS

@
The amplitudes of pitch and plunge motion of LCO have been calculated for various values
of º*/º*

L
, using equations (48) and (50). The amplitudes of pitch and plunge motions are

dependent on system parameters, velocity º* and angular frequency u of the LCO. In
Figure 15, the angular frequency u is plotted against º*/º*

L
for u6 "0)2, k"100,



Figure 13. Variation of conjugate eigenvalues with º*/º*
L

for pitch motion in the j-plane for u6 "0)2, k"100,
a
h
"!0.5, xa"0)25, ra"0)5, fa"fm"0 and ba"3.

Figure 14. Variation of flutter velocity and frequency at the Hopf point for k"100, a
h
"!0)5, xa"0)25,

ra"0)5, and fa"fm"0.
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Figure 15. Variation of u with º*/º*
L

for pitch motion in the post-Hopf bifurcation range for u6 "0)2, k"100,
a
h
"!0.5, xa"0)25, ra"0)5, fa"fm"0 and ba"3.
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xa"0)25, ra"0)5 and ba"3. The hollow symbol denotes u obtained from numerical
simulation using equation (15), while the solid symbols denote the value of the imaginary
part of a pair of eigenvalues of the Jacobian matrix given in equation (21). The value of u is
small and the difference between the two frequency curves increases with increasing º*/º*

L
.

Results for u6 "0)8 show the two frequency curves to be close to each other while the
differences are again large for u6 "1)2. The magnitudes of u are similar in the latter two
cases but are larger than those at the lowest u6 (for example, from numerical simulations,
u at u6 "1)2 is 3)15 times that at u6 "0)2 at º*/º*

L
"1)15).

Figure 16 gives the amplitudes of pitch motion of LCO for various values of º*/º*
L

at
u6 "0)2, k"100, xa"0)25, ra"0)5 and ba"3. The solid line is from numerical simulation,
while the symbols are analytical results from equations (48) and (50). Three different angular
frequencies are used to determine a

A
. The solutions denoted by hollow circles are obtained

using the frequency at º*/º*
L
"1)0, and this frequency can be obtained from either

numerical simulation or analytical method. The solid-circle results are calculated using the
local frequency at a given º*/º*

L
determined from numerical simulation. The solid triangle

represents solutions obtained from the imaginary part of the conjugate eigenvalues of the
Jacobian matrix. The amplitudes of pitch motion predicted by using various frequencies are
in good agreement. For the other two values of u6 considered (that is, u6 "0)8 and 1)2), it was
found that using the frequency at º*/º*

L
"1)0, the predicted results agree well with the

numerical simulation for u6 "1)2, but deviate from numerical solutions at u6 "0)8. Using
the imaginary part of the eigenvalues from the Jacobian matrix predicts the amplitudes of
pitch angle of LCO for u6 "0)8 fairly accurately, but fails to give acceptable results for
u6 "1)2.



Figure 16. Variation of pitch amplitude with º*/º*
L

in the post-Hopf-bifurcation range for u6 "0)2, k"100,
a
h
"!0.5, xa"0)25, ra"0)5, fa"fm"0 and ba"3.
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An explanation for the various agreements in pitch amplitude a
A

using different u can be
seen from equation (50), which shows that a

A
is given by R which contains terms of various

powers of u. For u6 "0)2, u is small and the differences in the values of u obtained by
various methods do not affect the magnitude appreciably. When u6 "0)8 and 1)2, u is much
larger and has a greater effect on the amplitude a

A
. The reason why the linear frequency

gives good results at u6 "1)2 is that the numerically determined u values vary slightly with
º*/º*

L
and they are close to the linear value at º*/º*

L
"1. At u6 "0)8, both numerical

simulation and Jacobian matrix results are close, and the difference from the linear value is
large. This accounts for the poor correlation between the numerically determined a

A
and

those obtained from equation (50) using the linear frequency at the Hopf point.
Figure 17 shows the amplitude of plunge motion m

A
of LCO versus º*/º*

L
for u6 "0)2,

k"100, xa"0)25, ra"0)5 and b
a
"3. The results using the numerically determined values

of u and those with the linear frequency at the Hopf point agree reasonably well with
numerical simulations. The agreement with the amplitudes determined using the frequen-
cies from the Jacobian matrix becomes increasingly poorer as º*/º*

L
moves further away

from unity. It is shown in Figure 15 that the difference in frequencies between numerical
and the Jacobian matrix solutions increases almost linearly with º*/º*

L
. Unlike a

A
, the

plunge amplitude m
A

is more sensitive to inaccuracies in u.

4. CONCLUSIONS

Numerical simulations of the effect of a cubic structural restoring force in the pitch degree of
freedom on the flutter characteristics of a two-dimensional airfoil placed in an incompress-
ible flow have been carried out. The study shows the dependence of the divergence flutter
boundary on initial conditions for a soft spring. For the spring constants and airfoil



Figure 17. Variation of plunge amplitude with º*/º*
L

in the post-Hopf-bifurcation range for u6 "0)2, k"100,
a
h
"!0.5, xa"0)25, ra"0)5, fa"fm"0 and ba"3.
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parameters investigated, the flutter speed decreases with increasing values of the initial pitch
and plunge displacements and their velocities. A hard spring, on the other hand, has a flutter
boundary that is independent of initial conditions. The nonlinear flutter speed coincides
with the linear flutter speed. Divergent flutter is not encountered, but instead limit-cycle
oscillation is observed for velocities greater than the flutter speed. At the flutter speed,
a supercritical Hopf bifurcation occurs.

In the post-Hopf bifurcation range, for a hard spring, the frequency of the LCO is
evaluated using an approximate method. For the airfoil parameters chosen in this study,
agreement with numerical simulations is affected only by the plunge to pitch natural
frequency ratio. The amplitude of the LCO as a function of the frequency is predicted using
an asymptotic theory. The results compare favourably with numerical solutions for small
values of the limit-cycle frequency since in such cases the amplitude is weakly dependent on
the frequency. For larger values of the frequency, the agreement deteriorates. The method
used to determine the frequency of the limit-cycle oscillation is valid only in the region close
to the Hopf point (i.e. º*/º*

L
"1). This deficiency in the present analysis can be eliminated

by a more mathematical study using the centre manifold theory and the principle of normal
forms. Some preliminary investigation shows that the equations can be reduced to a single
ordinary differential equation, and a frequency relationship can be determined for given
airfoil parameters.
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APPENDIX: NOMENCLATURE

a
h

nondimensional distance from airfoil mid-chord to elastic axis
b airfoil semi-chord
C

L
aerodynamic lift coefficient

C
M

pitching moment coefficient
h plunge displacement
m airfoil mass
R response amplitude of pitch motion
r response amplitude of plunge motion
ra radius of gyration about elastic axis
t time
º free stream velocity
º* nondimensional velocity, º/bua
º*

L
nondimensional linear flutter speed

xa nondimensional distance from elastic axis to centre of mass
X system variable vector
X

E
system equilibrium point

y variable vector
a pitch angle of airfoil
a
A

pitch angle amplitude of limit-cycle oscillation
ba , bm coefficients of cubic spring in pitch and plunge
e
1
, e

2
constants in Wagner’s function

fa , fm viscous damping ratios in pitch and plunge
j eigenvalue
k airfoil/air mass ratio, m/nob2
m nondimensional plunge displacement, h/b
m
A

plunge amplitude of limit-cycle oscillation
q nondimensional time ºt/b
/ Wagner’s function
t
1
, t

2
constants in Wagner’s function

u frequency
ua , um natural frequencies in pitch and heave
u6 frequency ratio, um/ua
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